

Mechanical Circulatory Support in Thailand: What Are Our Options?

Sirichai cheewatanakornkul MD.

Thailand

Disclosure

• I have no conflict of interest related to this presentation

Why do we need MCS devices

What are our options

Device characteristic

Clinical application & Evidence

Upcoming study

Topic

Why do we need mechanical circulatory support device ?

- We are getting more & more CHIP case
- Mortality in cardiogenic shock stable despite improve in quality of care esp. AMI-CS (Primary PCI, DTB, Network)

Cardiac power –Predictor of mortality in shock patient

Why do we need mechanical circulatory support device ?

Mechanical support devices have an ability to stabilize hemodynamic and bridge to

- Bridge to recovery
- Bridge to transplant
- Bridge to decision

Percutaneous Circulatory Support - Clinical application-

Cardiogenic shock (+/- AMI) / Decompensated heart failure

- Normalize CO/BP/Cardiac power
- Decrease PCWP
- Minimized myocardial damage & optimize myocardial recovery

High risk PCI

- Protection from temporary hemodynamic compromise
- facilitate complete revascularization
- Lower risk of acute kidney injury
- Myocardial Salvage in Setting of AMI
 - Reduce LV workload (and oxygen demand) to minimize necrosis and optimize myocardial recovery

Currently Available MCS

C/47 1993

Left Ventricle

Right Ventricle

The hemodynamic support equation

Level of circulatory support from MCS devices

TCTAP 2021 VIRTUAL

JACC intervention vol 9 , no 9, 2016 : 871-83

Intra-Aortic Balloon Pump (IABP)

improved coronary perfusion increase in myocardial oxygen supply no active mechanical augmentation of cardiac output

Intra-Aortic Balloon Pump (IABP)

- Advantage
 - Available in most lab & Easy to implantation
 - Available in 7 8 Fr Catheter sizes minimizing threat of vascular complication
 - Range of balloon sizes available to accommodate all patient height
 - Require only > 4 mm femoral artery
- Disadvantage
 - Only supplement cardiac output by upto 0.3-0.5 l/min and requires a degree of native cardiac output to function
 - <u>Relies on synchronization with cardiac cycle (may not be reliable in dysrhythmia) + need native Left ventricular function</u>
 - Risk of systemic embolization (Cholesterol, Helium)
 - Stroke , Infection , hemolysis , Bleeding at insertion , lower limb ischemia

Impella device

- Flow 1-5 I/min.
- LV to AO
- Single vascular access
- Sheath size
 - 12 Fr for impella 2.5
 - 14 Fr for impella CP
 - 21 Fr for impella 5.0
- Device shaft 9 Fr
- Femoral artery size
 - Impella 2.5 & CP => 5 5.5 mm
 - Impella 5.0 => 8 mm

VA ECMO

- 3-7 L / min
- RA to AO
- Dual vascular access points
- 18 24 Fr venous cannula
- 14 16 Fr arterial cannula
- Incoporate
 - Oxygenator
 - Heat exchanger
- Complex management

VA-ECMO cannulation strategy

Peripheral ECMO circulation consideration

	Baseline	IABP	Imp	ella	ECMO	IABP + ECMO	Impella + ECMC
			•				
French		8–9	13 (2.5)	14 (CP)	14–19 (A) 17–21 (V)	8–9 (IABP) + 14–19 (A) 17–21 (V)	13–14 (Impella) + 14–19 (A) 17–21 (V)
HR, bpm	100	100	100	100	100	100	100*
PCWP, mmHg	23	-4%	-9%	-13%	+17%	+13%	+9%*
AoP, mmHg	81/46 (61)	+2%	+8%	+15%	+28%	+31%	+39%*
CO, L/min	3.93	+5%	+13%	+28%	+43%	+48%	+60%*
CPO, watts	0.53	+7%	+21%	+34%	+81%	+91%	+118%*
PVA, mmHg × mL	4989	-3%	-7%	-13%	+16%	+14%	+7%*
CBF, mL/min/g	0.09	+10%	+10%	+20%	+40%	+50%	+70%*
Approved duration of assistance		No limitations (vascular complications increases after 2 days)	4 day 5 day	s (US) s (EU)	Usually < 7 days ¹ (poor survival if > 7 days)	See IABP and ECMO columns	See Impella and ECMO columns

Contraindications & complication

TABLE 5 MCS Device Contraindications and Complications

	IABP	Impella	TandemHeart	VA-ECMO
Contraindications	Moderate to severe AR Severe PAD Aortic disease	LV thrombus Mechanical aortic valve Aortic stenosis with AVA <0.6 Moderate to severe AR Severe PAD Contraindication to anticoagulation	Severe PAD HIT DIC Contraindications to anticoagulation LA thrombus VSD Moderate to severe AR	Contraindications to anticoagulation Moderate to severe AR Severe PAD
Complications	Stroke Limb ischemia Vascular trauma Balloon rupture Thrombocytopenia Acute kidney injury Bowel ischemia Infection	Device migration Device thrombosis Limb ischemia Vascular trauma Hemolysis Infection Stroke	Air embolism Thromboembolism Device Dislodgement Cardiac tamponade Limb ischemia Vascular trauma Hemolysis Infection Stroke	Bleeding Vascular trauma Limb ischemia Compartment syndrome Acute kidney injury Hemolysis Thromboembolism Air embolism Infection Neurological Injury
Bleeding/hemolysis	+	++	++	++
Vascular complications	+	++	+++	++++

CTAP 2021 VIRTUAL

JACC intervention vol 9 , no 9, 2016 : 871-83

Vascular access site & bleeding complication

Figure 4. A. Access-site-related vascular and bleeding complication rate in high-risk percutaneous coronary intervention according to different percutaneous ventricular assist device (averaged mean value); **B.** Access-site-related vascular and bleeding complication rate in cardiogenic shock according to different percutaneous ventricular assist device (averaged mean value). Note: Major and minor vascular/bleeding complications are pooled together; PCI — percutaneous coronary intervention; IABP — intra-aortic balloon pump; ECMO — extracorporeal membrane oxygenation; *data from both Impella 2.5 and CP were considered. For references [1–6] see dedicated reference list.

Giulio Russo et al., PVAD selection in cath-lab

Clinical application

High risk PCI Protected PCI

Cardiogenic shock

Definition of High risk PCI

TABLE 3 High-Risk PCI

Clinical LVEF <35% hemodynamic Electrical instability Congestive heart failure Comorbidities Severe aortic stenosis Severe mitral regurgitation Chronic obstructive pulmonary disease Chronic kidney disease **Comorbidities** Diabetes Cerebrovascular disease Peripheral vascular disease Age >75 yrs Acute coronary syndrome Coronary anatomy Complex anatomy Last patent vessel UPLMN 3 vessel disease, SYNTAX score >33 Target vessel providing collaterals to a territory, which supplies >40% of the myocardium Distal left main bifurcation

IABP in High risk PCI

RCT in UK , multicenter N = 301 High risk definition LVEF < 30% Extensive coronary disease (Jeopardy Score >8/12) 12% Bail-out IABP

No different in MACCE at discharge & mortality @ 6 month

BCIS – I study

JAMA. 2010;304(8):867-874

Impella in high risk PCI

First Author/Trial						
(Ref. #)	Indication	HR-PCI/Shock Definition	N	Devices	Outcomes	Complications
USPella (30)	Prophylactic HR-PCI	Severe 3VD, UPLMN, last patent vessel, low EF No STEMI or shock, mean SYNTAX score 36	175	Impella 2.5	12-month survival: 88%	MACE: 8%
EuroPella (52)	Prophylactic HR-PCI	Severe 3VD, UPLMN, last patent vessel, EF <30% No STEMI or shock	144	Impella 2.5	30-day survival: 94.5%	MI: 0%, stroke 0.7%, bleeding 6.2%, vascular complication 4%
Protect I (7)	HR-PCI	Last patent vessel, UPLMN, EF <35% No STEMI or shock	20	Impella 2.5		MACE 20%
PROTECT-II (23)	HR-PCI	UPLMN, last patent vessel, EF <35%, 3VD, and EF <30%	452	IABP (226) versus IMPELLA 2.5 (226)	Superior hemodynamics with Impella (CPO) No statistical difference in MAE	MAE: MAE 30 & 90 days: (ITT) Impella: 35.1%, 40.6% IABP: 40.1%, 49.3%

ECMO in high risk PCI

(Ref. #)	Indication	HR-PCI/Shock Definition	N	Devices	Outcomes	Complications
Teirstein et al. (55) registry	HR-PCI and VA-ECMO	 Stable or unstable angina pectoris; at least 1 coronary artery stenosis amenable to PCI; 3) EF <25%; or 4) angioplasty target vessel supplying >50% of the viable myocardium, or both 	389: prophylactic CPS 180: standby CPS	CPS	↑ Procedural morbidity prophylactic 41.3 versus 9.4% standby, no improvement in outcome	7.2% required initiation of standby CPS Standby CPS: provided excellent support and recommended over prophylactic CPS
Schreiber et al. (56)	HR-PCI	Low EF, culprit vessel supplying the majority of myocardium, or intended multivessel angioplasty	CPS: 58 IABP: 91	IABP versus CPS	No difference in MACE (MI, stroke, death, CABG) Multivessel angioplasty success rates higher in CPS (40% vs. 20%)	Increased vascular repair with CPS (14 v. 3%) Increased transfusion with CPS (60 versus 27%)

ECMO should not be the front line MCS device in HR -PCI

TCTAP 2021 VIRTUAL

First Author/Trial

JACC intervention vol 9 , no 9, 2016 : 871-83

Which device should we use ?

- Degree of support needed ?
- Any contraindication for specific device ?
- Arterial acces suitability?

Bail – out device preparation

Insert 5Fr sheath for rapid exchange in femoral artery

Giulio Russo et al., PVAD selection in cath-lab JACC intervention vol 9 ,no 9, 2016 : 871-83

Clinical application

High risk PCI Protected PCI

Cardiogenic shock

TCTAP 2021 VIRTUAL

Thiele et al. NEJM 2012;367:1287-1296

TCTAP 2021 VIRTUAL

Roffi et al. Eur Heart J. 2016;37:267-315 Windecker et al. Eur Heart J. 2014;35:2541-2619 Ponikowski et al. Eur Heart J.2016;37:2129–2200 ESC STEMI Leitlinien 2017. Eur Heart J 2017; epub

30-day mortality between MCS vs IABP

Early ECMO-assist primary PCI

Few data only registry , no RCT

ESC STEMI Guidelines 2017

MCS in cardiogenic shock

ESC STEMI Leitlinien 2017. Eur Heart J 2017; epub

Patient Selection?

Upcoming trial for answer the question

Randomized Control Trials Evaluating Mechanical Circulatory Support in Acute Myocardial Infarction and Cardiogenic Shock

Cardiogenic shock

High risk PCI

Conclusion / Take-home Message

- All MCS devices have some limitation /contraindications
- Careful case selection is the key to improve the patient outcome
- In High risk PCI
 - Planning and prepare for the worst
 - Bail out MCS device is another option (better to have arterial access and standby device)
- In CS
 - Monitoring & early escalate therapy with MCS device is the key to break the spiral
 - Implementing "best practices" and developing "shock team" is associate with improve outcome

Choose the right mechanical circulatory support device to the right patient.